This is a collection of projects I created for CS 530: Introduction to Computer Visualization. Each project required an HTML writeup, so I figured it would be easiest to keep a collection of links here…
Project 1: First Steps with VTK
To get acquainted with the Visualization Toolkit (VTK), we used bathymetry (sea depth) and topography information from NASA to visualize the earth in a few different ways. We also implemented a Sea Rise simulation that shows how land masses on Earth change as the sea level rises.
Project 2: Color Mapping
This project focused on choosing the right color maps to visualize different types of data. The two types of data we looked at were MRI scans and a topographical map of the western U.S. With these data sets, we were tasked with creating appropriate color maps in both continuous and discrete styles.
Project 3: Isosurfaces
Isosurfacing allows the medical industry to convert 2-dimensional slices, such as the CT slices used in this project, to 3-dimensional surface in space. This project explored different techniques of building isosurfaces and mapping colors to them.
Project 4: Direct Volume Rendering
Although isosurfacing can generate a surface in 3D, the medical industry often uses raycast volume rendering instead because it better reflects the ambiguity and imprecision of the measurement. Rather than creating a geometry from data, volume rendering uses rays emitted from the object, adding opacity and color along the way. This project dealt with two data sets, the CT scan from the previous project, and vorticity surrounding a delta wing on an aircraft.
Project 4 Bonus: Multidimensional Transfer Function
Using the programs created for the last project, I added a 2nd component to rendering using the gradient magnitude files generated from the same data set.
Project 5: Vector Field/Flow Visualization
This final project explored vector field visualization of velocity data surrounding a delta wing dataset. I visualize the vector field in different ways: plane slices showing the velocity data with arrow glyphs, streamlines, stream tubes, and a stream surface. Finally, I present the streamlines with the isosurface that makes up the magnitude of the vortices for reference.